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Abstract

As the importance of stochastic forcing to the interdecadal variability in the ocean and atmosphere
becomes more widely appreciated, numerical stochastic modeling becomes more common. In most cases,
the details of how the stochastic modeling is implemented are not considered an important part of the
modeling. In this study, we show in the context of a reduced gravity, double-gyre ocean model driven by
wind stress how “minor” details of stochastic forcing can have a significant effect on the temporal and
spatial response by the forced system. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The effect of stochastic “weather’ noise on the oceanic “climate’ system has been an object of
research since Hasselmann’s classic paper appeared in 1976. That paper emphasized univariate
linear systems which have been surprisingly successful in describing, for example, mid-latitude sea
surface temperature (e.g., Frankignoul and Hasselmann, 1977; Blaauboer et al., 1982). The suc-
cess of these studies has inspired researchers to consider stochastic forcing as a possible source of
more complex dynamics, particularly on the interdecadal scale (e.g., Barnett et al., 1999; Junge
et al., 2000; Czaja and Frankignoul, 1999; Weng and Neelin, 1998; Sura et al., 2000, 2001;
Miinnich et al., 1998; Saravanan and McWilliams, 1997, 1998; Mikolajewicz and Maier-Reimer,
1990, and others).
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The physical justification of stochastic forcing lies in the dynamical form of the central limit
theorem (CLT: e.g., Papanicolaou and Kohler, 1974; Gardiner, 1985), which states the conditions
under which rapidly varying, generally nonlinear processes may be treated as white or colored
Gaussian random noise. The treatment of these processes as noise is not arbitrary but is rather
strictly prescribed by the CLT. Nevertheless, the implementation of stochastic forcing in climate
models seems to be nearly as varied as the climate models themselves. Although most researchers
appear to use some type of autoregression process to model the noise, the details of the imple-
mentation, such as the frequency of sampling the process, vary widely and are sometimes not even
included in the description of the model. This is true in spite of the large literature on dynamically
consistent numerical methods of treating stochastic processes (e.g., Riimelin, 1982; Kloeden and
Platen, 1992). This widespread lack of attention to the details of the temporal specification is
somewhat puzzling. After all, the importance of spatial variations in stochastic forcing to system
response is well known, and has been investigated in many studies (e.g., Farrell and Iaonnou,
1996a,b; Penland and Matrosova, 1994; Penland and Sardeshmukh, 1995; Sura et al., 2000, 2001;
Junge et al., 2000; Moore, 1999), some of which also address the temporal aspects of stochastic
modeling. Nevertheless, it may appear reasonable that these details would not be important as
long as the timescales of interest in the forced system are much longer than those of the stochastic
driving.

The apparent reasonableness of this assertion led us to investigate this notion. In this paper, it is
shown how different descriptions of small timescale aspects of stochastic forcing can cause sig-
nificant variations in the low-frequency response of a simple but oceanographically relevant
double-gyre model. The double-gyre model has been used extensively to investigate various linear
and nonlinear effects of wind stress forcing on the oceanic circulation (e.g., Pedlosky, 1996).
Beside the role played by dissipative processes within the western boundary currents, the rich
structure of multiple equilibria is becoming evident. Several authors show that, for a range of
parameters, the double-gyre circulation possesses multiple steady states (e.g., Cessi and Ierley,
1995; Speich et al., 1995; Jiang et al., 1995; Primeau, 1998a,b; Scott and Straub, 1998). More
precisely, these authors explicitly computed fixed point solutions for a broad range of parameters
except Jiang et al. (1995). Jiang et al. (1995) do not explicitly compute stationary solutions, but use
a time-dependent model to explore a parameter range where even a time-stepping procedure yields
steady-state solutions. The quasi-geostrophic double-gyre (Cessi and lerley, 1995; Primeau,
1998a,b; Scott and Straub, 1998) is characterized by two classes of steady states: one class consists
of perfectly antisymmetric solutions and the other class consists of asymmetric solutions. The
asymmetric solutions come in pairs due to the quasi-geostrophic symmetry. Cessi and lerley
(1995) conjecture that all equilibria are of significance in the description of the low-frequency
variability of the wind-driven circulation, regardless of their stability. Comparable experiments
with the primitive equations were performed by Speich et al. (1995) and Jiang et al. (1995). De-
spite the fact that the primitive equations do not satisfy quasi-geostrophic symmetry, they showed
that the asymmetric equilibria come in pairs, in agreement with the quasi-geostrophic calcula-
tions.

The impact of an additive stochastic wind forcing on the double-gyre circulation is studied, for
example, by Griffa and Castellari (1991), Moore (1999), and Sura et al. (2001). Thereby, the
stochastic wind stress components are interpreted as high-frequency weather fluctuations of the
mid-latitude atmosphere. Griffa and Castellari (1991) analyze the effects of the stochastic wind
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stress on the climatological mean of the highly nonlinear ocean circulation. It is found that the
stochastic wind drives the circulation toward a Fofonoff type flow, as long as only the stochastic
forcing is used. In the case of an additional steady double-gyre wind stress, the stochastic com-
ponent is found to weaken the recirculation regions and the jet between the two gyres. This change
of the mean can be described in terms of a “noise-induced transition” (Horsthemke and Lefever,
1984). Noise-induced transitions can occur if a certain amount of randomness is present in the
environment of the nonlinear system under consideration. Then, the system undergoes a char-
acteristic qualitative change of its probability density function (PDF) due to the impact of the
external noise. Moore (1999) uses the barotropic double-gyre model to compute stochastic opt-
imals. In this case stochastic optimals are spatial patterns of stochastic wind stress curl that are
optimal for increasing the variability of the double-gyre ocean model. The gravest stochastic
optimal is reminiscent of the Ekman pumping produced by transient large-scale atmospheric
pressure systems. That is, Moore (1999) shows that the storm track has the potential to produce
significant variability in the subtropical and subpolar gyres. Sura et al. (2001) introduce a spatially
inhomogeneous stochastic component to parameterize the observed localized variability of the
midlatitude storm-tracks. The authors show that the simple wind-driven ocean model forced by a
combination of a double-gyre wind stress and a spatially inhomogeneous stochastic field shows a
complex behaviour. The dominant regime is a quasi-antisymmetric state with a free jet penetrating
deep into the basin. A second flow pattern appears to be related to the choice of the spatially
inhomogeneous stochastic forcing. It is asymmetric with a very strong northern recirculation gyre
and a north-eastward flowing jet. The asymmetric regime may be related to one member of a
known asymmetric pair of stationary solutions found in the deterministic case. The asymmetric
pattern does not appear without the spatially inhomogeneous stochastic forcing nor with spatially
homogeneous stochastic forcing. Thus, the regime transitions are induced by the spatial inho-
mogeneity of the white noise variance. Please note that we use the term ‘“‘regime transition”
loosely; there is some doubt as to whether the stable steady states of the deterministic case are able
to retain their stability in the presence of stochastic forcing (see below).

In the present study the experimental setup of Sura et al. (2001) is used to investigate how
different descriptions of the stochastic forcing can alter the low-frequency response of a simple
double-gyre model. We have chosen this setup for the single reason that it has been used so often
in the studies cited above. We do not mean to imply that the stochastic forcing is the only
problematic issue with this model; however, it is the issue we choose to emphasize. This paper is
arranged as follows. In Section 2, a brief description of the ocean model and the atmospheric
forcing are provided. The various experiments are explained in Section 3. Results are presented in
Section 4, and a general discussion ends this paper.

2. The model
2.1. Ocean model
The nonlinear reduced-gravity equations in transport form are used to model the upper ocean

in a rectangular basin of 2400 km by 2400 km extent; (x, y)-coordinates increasing eastward and
northward are used. In the reduced-gravity approximation the ocean is represented by a single
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active layer of constant density p, of thickness H. The upper-layer is assumed to overlie a deep
and motionless layer of density p,. With this constraint only the first baroclinic mode is modeled.
That is, the interface between the two layers represents the permanent thermocline. The eastward
and northward transport is defined as U = uH and V = vH, whereby u and v are the corre-
sponding velocities, t* and 7’ are the wind stress components, g is the acceleration of gravity, and f
is the Coriolis parameter given by the ff-plane approximation, f = fy + ffy. Thus, the equations

are:
aa(z] §C<U2>+§v<w> fV—_zg ag:JrT—x—rUJrAAU (1)
L)) e F
LY,

where the reduced gravity is g’ = g(p, — p;)/p,-

Interfacial friction is parameterized by Rayleigh friction scaled by r; the lateral viscosity is
represented by a Laplacian scaled by A. All parameters of the model are summarized in Table 1.
For dynamical parameters, standard numerical values are used. The Lapla01an friction coefficient
is chosen to adjust the width of the dimensional Munk layer oy, = (4/ ﬁ) to approximately the
width of the numerical grid: Jy; = 23.11 km and Ax = Ay = 20 km (see below).

The dynamics of the wind-driven model is controlled by several nondimensional parameters.
The parameters, derived from the nondimensional form of the barotropic quasi-geostrophic
vorticity equation (e.g., Pedlosky, 1996), are the dimensional inertial, Stommel, and Munk layer
thickness scaled by the width of the basin (the asterisk denotes dimensional values)

5 U\ 5 r o [ 4AN"
=g =(g) - as=p=g w== (4] @
Table 1
Model parameters
Coriolis parameter f=103x10"*s"!
Beta-effect B=162x10" m! s!
Upper-layer equilibrium depth Hy = 600 m
Rayleigh friction coefficient r=1x107"7
Laplacian friction coefficient =2x10°m 2 57!
Upper-layer density = 1027 kg m’3
Lower-layer density p2 =1030 kg m™
Reduced gravity g =0.029 ms?
Wind stress amplitude 70 = 0.05 N m™
Time-step At =1200 s
Domain extent (north—south) L, = 2400 km
Domain extent (east-west) L, = 2400 km
Grid resolution Ax =20 km

Ay =20 km
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The velocity scale in the interior, U, and a characteristic value of the wind stress, 7, are connected
by the Sverdrup relation. For a rectangular basin with a double-gyre wind stress, the scaling reads
U = (2nt)/(p,PL,Hy) (then 7 is the amplitude of the double-gyre forcing). The three parameters
measure the importance of the nonlinearity, bottom friction, and lateral diffusion. In particular,
the relative importance of the nonlinearity and the lateral diffusion is often expressed through the
boundary layer Reynolds number

o\’

M_(%). (5)
For the parameters used in the present study (Table 1) the dimensional Stommel and Munk layer
widths are Jg=6.17 km and dy, =23.11 km (nondimensional values: ds=2.571 x 107,
dm = 9.629 x 107?). For a typical wind stress value of 0.05 N m~? the dimensional inertial layer
width is J; = 28.44 km (nondimensional value: §; = 1.185 x 1072). This gives a boundary layer
Reynolds number of Re = 1.86. The equations of motion are solved numerically on a staggered
Arakawa-C grid. The model resolution is 20 km in both the zonal and meridional direction. Note
that the Stommel layer has a width of dg = 6.17 km and, therefore, is not resolved within the used
resolution. Time differencing is performed by the Matsuno (Euler backward) scheme, space dif-
ferencing by space-centered finite difference approximations. The time-step is 20 min. The non-
linear advection terms are computed by first averaging the prognostic variables in space to
calculate the required products at the appropriate meshpoints before the centered finite are cal-
culated. The no-flux boundary condition is used to suppress the normal flow at the boundaries.
Furthermore, the tangential boundary condition is a linear combination of tangential velocity and
stress

(i - T+ (1= p)ii - V(ii - 7))|c = 0, (6)

where 7 is the unit vector tangent to the domain boundary C and 7 is the unit vector normal to C.
The parameter y has the limiting values for no-slip (y = 1) and free-slip (y = 0) boundary con-
ditions. For this reason, (6) is normally designated as a partial-slip boundary condition. For this
study a half-slip condition (y = 0.5) is employed. The choice of the half-slip condition is due to
Haidvogel et al. (1992), who suggests that the tangential velocities at the boundaries should lie
between the no-slip and the free-slip limits.

Two standard definitions are introduced that are used throughout the remainder of this paper.
The layer thickness H is the sum of the equilibrium depth H, and the depth anomaly /4, so that
H(x,y,t) = Hy + h(x, y,t). Furthermore, all time-dependent variables, e.g., Y, are divided into a
long-term mean  and a deviation v/, such that =y + /.

2.2. Atmospheric forcing

The atmospheric forcing of the ocean by the wind stress consists of a mean field and a sto-
chastic field

T = Tmean T Tstochastic- (7)
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The mean wind stress Tpean 1S represented by a zonal wind field with a sinusoidal pattern

T ean = PTo COS (%), —%gyg%. (8)
This generates a northern cyclonic subpolar and a southern anticyclonic subtropical gyre. The
reference wind stress amplitude 7, is set to a standard value of 0.05 N m 2. Recognize that the
amplitude of the fluid motion and hence the nonlinearity of the system is proportional to
the strength of the wind stress. Therefore, nonlinear effects can be studied by varying the wind
stress parameter ¢. Because the boundary layer Reynolds number for the reference wind stress
amplitude 7, is Re = 1.86, the value of Re for different wind stress parameters is Re = 1.86¢.

The spatially inhomogeneous stochastic forcing Tochasic accounts for the mid-latitude synoptic
atmospheric variability and is parameterized by the bulk formula for the wind stress. This leads to
the parameterization of the spatially inhomogeneous stochastic forcing

?stochastic = PAir CD ’ﬁ/ ’ﬁ/v
u'(x,p,t) = n, (1) (x,),
V0, 1) = m,(0f (x.p), )

where p,,, |i'| and i are the air density (1.3 kg m™°), near surface wind speed, and velocity;
Cp (2 x 1073) is the drag coefficient, and 7, ,(¢) are independent stochastic processes with zero
mean and standard deviation ¢. The weight function f(x, y) parameterizes the spatial structure of
the atmospheric variability by a Gaussian shape, whose origin is placed in the center of the basin

o x2 y2
flx,y) = exp| —-5 75 (10)
(m Ay Exf(Le/22,)Exf(L,/24,)) "2 272 2]}

with the error function Erf. The denominator normalizes the area integral of the squared weight
function over the basin domain @ to unity, and « is a scaling constant. The inhomogeneity pa-
rameters, 4, and 4,, control the spatial structure of the atmospheric variability. To obtain circular
symmetry of the stochastic forcing, 4, = 4, = 4. The Gaussian shape with circular symmetry is
chosen for convenience to parameterize the localized atmospheric eddy activity along the storm-
tracks in a conceptual manner. The physical motivation for the particular weight function is that
the observed climatological position of the North Atlantic storm-track maximum is approxi-
mately coincident with that of the observed mean zero wind stress curl line The low-frequency
meridional shift of the storm track due to NAO is not included in the parameterization used.
The scaling constant « is chosen to adjust the weight function in the origin to 1 for A = 600 km.
Thus, o« = (i, AErf(L,/22,)Erf(L,/22,))"* with 2, = J, = 600 km. The variance ¢ of the sto-
chastic forcing is 25 m? s~ (except one experiment; see following section), characterizing the
observed atmospheric conditions in the North Atlantic region. That is, the variance of the wind
speed in the center of the basin is comparable to the observed conditions (Wright, 1988). Nev-
ertheless, the stochastic forcing has to be understood as a conceptual tool to study the effect of
noise on simple wind-driven ocean models. In the following experiments we consider only the
cases where ¢ = 1.3 and 4 = 300 km. Then, the corresponding boundary layer Reynolds number
is Re = 2.76 and the stochastic forcing is spatially very inhomogeneous. Moreover, with ¢ = 1.3
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. That is, the mean and the stochastic

the maximum of the double-gyre wind speed is 5 m s~
forcing have the same magnitude.

These are the parameter values where Sura et al. (2001) find very pronounced transitions be-
tween a quasi-antisymmetric and an asymmetric flow pattern. This situation is chosen as a ref-
erence case, because the oceanic response to the spatially inhomogeneous stochastic forcing is well
defined in time and space and already documented (Sura et al., 2001). In the following, only the

small-timescale aspects of the stochastic forcing are changed, as described in the following section.

3. Experiments

There are two issues to be considered: the temporal covariance structure and the probability
distribution of the rapidly varying forcing. These issues are addressed using four forms of sto-
chastic driving. The first (Model 1) is that of Sura et al. (2000, 2001), who sampled a flat dis-
tribution once daily. For a flat distribution with zero mean and variance ¢ = (21,)°/12 the
probability density dP is constant over the interval [—#,, 7,] (see Appendix A). Once daily means
that the noise is updated once a day. The forcing in the second experiment (Model 2) was also
sampled once daily, but from a Gaussian probability distribution with the same variance as that
of the forcing in Model 1. The third experiment (Model 3) consisted of forcing the ocean model
with Gaussian red noise having a decay time of 1 day, but sampled at each 20-min time-step
during the model integration. That is, the lagged autocorrelation function for the stochastic
forcing in Models 1 and 2 is equal to unity for lags less than one day, but is equal to zero for lags
greater than one day. The autocorrelation function for the stochastic forcing in Model 3 decays
exponentially with an e-folding time of one day. Models 2 and 3 are constructed so that their
Gaussian distribution has the same variance as the flat distribution of Model 1. The spectra of the
different stochastic models are derived in Appendix A and shown in Fig. 1. Recall that spectra are
averaged quantities and, therefore, the spectra of Models 1 and 2 are identical. Moreover, it is
important to recognize that the spectrum of Model 3 has a higher variability above the e-folding
timescale of one day than the spectrum of Model 1 or Model 2. That is, the daily sampling of the

Spectra of stochastic forcing models
1e+00
leOl ¢
le-02 ¢
1e-03 ¢
le-04
le-05 ¢

le-06 : : ‘ :
0.001 0.01 0.1 1 10 100

Frequency [1/days]

Variance

Fig. 1. Variance spectra of the different stochastic forcing models. The spectra of Model 1 (flat distribution sampled
once daily) and Model 2 (Gaussian distribution sampled once daily) are indicated by the solid line. The spectrum of
Model 3 (Gaussian red noise) is indicated by the long dashed line, whereas the spectrum of Model 4 (Gaussian red noise
with decreased variance) is indicated by the short dashed line.
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stochastic wind forcing results in a reduced variance of the wind stress above the decorrelation
timescale. Because of this a fourth experiment (Model 4), similar to Model 3, but with the total
variance reduced to 12.5 m? s=2 is performed (see Fig. 1). The halving of the variance has the
effect that the low-frequency part above the decorrelation timescale of Model 4 coincides with the
spectra of Models 1 and 2.

The red-noise forcing in Models 3 and 4 was generated in a manner consistent with a univariate
Ornstein—Uhlenbeck process

dn = —ypdt +/Qdw, (11)

where 7 is the stochastic forcing for Model 3, y =1 day ™', and W is a Wiener process. The
Ornstein—Uhlenbeck process, also called red-noise or damped Brownian motion, is one of the
simplest stochastic processes. The classical Brownian motion problem describes the irregular
motion of a particle immersed in a fluid; the collisions with the fluid particles impart a random
force and a viscous drag on the immersed particle (see e.g., Paul and Baschnagel, 1999). Never-
theless, the Ornstein—Uhlenbeck process can also be used to model the high-frequency weather
fluctuations of the mid-latitude atmosphere.

The constant Q has been chosen using the fluctuation dissipation relation (FDR: e.g., Penland
and Matrosova, 1994):

0 = 2y(r’) (12)
for the specified value of (). The FDR relates the variance of the stochastic fluctuations to the

magnitude of the dissipation. Therefore, the autocorrelation function for the stochastic forcing in
Model 3 reads

non(e)) =2—% exp(—ylt — 7). (13)

The numerical implementation of (11) was performed using the stochastic first-order Runge—
Kutta scheme with time-step Az (Rumelin, 1982; Kloeden and Platen, 1992):

n(t+ At) = n(t) — ynAt + / QAIR, (14)

where R is a centered Gaussian random deviate with unit variance. Note that the decay term is
updated by the time-step while the random source term is updated by the square root of the time-
step. This procedure is necessary to generate a time-series which obeys the FDR (12) and which
also has the spectrum appropriate to the dynamical process (11). A test of the numerical model
(14) using Ar = 20 min verified that it generated the desired statistics with sufficient accuracy.

All experiments commence from a resting state and are integrated for 510 years. The first 10
years are always skipped to account for the spin-up phase. Transports, velocities, and depth
anomalies are saved once a day. For all further diagnostics monthly means are used to calculate
the basin-integrated eddy kinetic energies (see below) because it is reasonable to employ the period
of the nondispersive first baroclinic Rossby mode in mid-latitudes as an appropriate timescale,
which has the order of years.

A convenient overall description of the transient behaviour of the basin circulation can be given
in terms of the integrated eddy energy content in the basin domain Q. The basin integrated eddy
kinetic and eddy potential energies are defined by
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=g [ [ (2 0+ (15)

Epolo //(‘gp1 )dxdy- (16)

The brackets with the Q2 subscript denote the basin average. Furthermore, the volume transport
stream function  is used to show the structure of the flow patterns: U = —0y/ /0y, V = 0yr/0x.
This is done to emphasis the symmetry properties of the double-gyre solutions.
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Fig. 2. (a)—~(d) Time-series of basin integrated eddy energies (J m~2) for ¢ = 1.3 for Models 1, 2, 3, and 4 respectively.
The dashed lines denote the eddy potential energies, the solid lines the eddy kinetic energies. (e)-(h) The corresponding
histograms of the eddy kinetic energies.
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4. Results

The time-series of the basin-integrated eddy energies of the four different stochastic models,
along with the corresponding histograms of eddy kinetic energy, are shown in Fig. 2. Since his-
tograms of potential energy and kinetic energy show the same qualitative structure, we concen-
trate on only one of them (kinetic energy) for clarity. In the following, the basic experiments
(Models 1-3) are discussed first. The remaining experiment (Model 4) is discussed separately since
differences between results from Model 3 and those from Model 4 are caused simply by a change
of parameter rather than a change of technique.

4.1. Models 1-3

The common feature in the oceanic response in all the stochastic models is, disregarding the
obvious differences discussed later, that the model undergoes transitions between a quasi-anti-

1200

-1200
0
()

1200

600 1200 1800 2400

600 1

-1200
0

600 1200 1800 2400
(b)

Fig. 3. Representative volume transport streamfunction fields (10° m* s7!) for the two different regimes in the ex-
periment with ¢ = 1.3 and /1 = 300 km: (a) represents the low eddy energy state and (b) the high eddy energy state. The
axes are horizontal distances in kilometers.
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symmetric and a asymmetric flow pattern, as described by Sura et al. (2001). The phases of low
eddy energies are characterized by the quasi-antisymmetric circulation (see Fig. 3(a)), whereas the
phases of high eddy energies are characterized by the asymmetric flow pattern (see Fig. 3(b)). Note
that eddy energies are used to analyze the transient behaviour of the ocean model. In terms of
total energies the asymmetric regime is more energetic than the quasi-antisymmetric regime. This
complex behaviour of the ocean circulation is induced by the spatial inhomogeneity of the sto-
chastic wind stress forcing. The stochastic forcing appears to enable the system to reach the
neighbourhood of an unstable fixed point that is not reached without the spatially inhomogeneous
stochastic wind field. The unstable fixed point then acts to steer the model into a temporarily
persistent regime.

Spectra of oceanic response

1e+07 . :
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Fig. 4. Variance spectra of oceanic eddy kinetic energies for Model 1 (solid line), Model 2 (long dashed line), Model 3
(short dashed line), and Model 4 (dotted line).

Autocorrelation of oceanic response

Autocorrelation
o
~

0 20 40 60 80 100 120
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Fig. 5. Autocorrelation functions of oceanic eddy kinetic energies for Model 1 (solid line), Model 2 (long dashed line),
Model 3 (short dashed line), and Model 4 (dotted line).
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The spectra of the eddy kinetic energy time-series are shown in Fig. 4. In all experiments an
overall red-noise behaviour is observed, as expected from the stochastic climate scenario proposed
by Hasselmann (1976). The red oceanic spectrum is a consequence of the amplification of low-
frequency weather fluctuations. Nevertheless, compared to Models 1 and 2, the oceanic spectrum
forced by Model 3 shows an enhanced variability in the high-frequency range up to approximately
5 months, and enhanced low-frequency variability on timescales above approximately 50 months.
The spectra of Models 1 and 2 are more similar. In summarizing the oceanic response in the
spectral domain, it is worth mentioning that the low-frequency variability of the ocean model
changes due to the different sampling techniques of the stochastic forcing. In particular, the
oceanic low-frequency variability is somewhat enhanced if a pure red-noise forcing is used (Model
3). This is a consequence of the higher variability above the e-folding timescale of Model 3,
compared to the spectra of Models 1 and 2 (see Fig. 1).

The stationary nature of the histograms in Fig. 2 and the spectra in Fig. 4 may mislead one into
believing that the details of the stochastic forcing are irrelevant to the ocean response. An indi-
cation that this may not be the case is shown in Fig. 5. There, the autocorrelation functions of the
eddy kinetic energy time-series are shown. The maximum time lag is set to 120 months, to reveal
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Fig. 6. Transition probabilities p(i|2), i = 1, 3, of going from the normal tercile (a) to the below normal state (p(1]2))
and (b) to the above normal state (p(3]2)) for Model 1 (filled circles). Model 2 (+-signs). Model 3 (x-signs), and Model
4 (filled diamonds).
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the rapidly-varying, that is in this case the monthly variability of the ocean model. The common
feature in the oceanic response in all the stochastic models is that the main decorrelation time-
scale, roughly defined as the width of the region with the steepest gradient, of the stochastically
forced ocean is about 20-24 months. In that region the autocorrelation functions of the response
to Model 1 and to Model 3 have nearly the same gradient. Only the ocean response in Model 2 has
a somewhat steeper gradient. The autocorrelation of Model 1 remains the highest of all three
stochastic models for time lags larger than 20-24 months. This behaviour of Model 1 is perhaps
due to the fact that Model 1 forces regime transitions less often than Models 2 and 3. That is,
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340 P. Sura, C. Penland | Ocean Modelling 4 (2002) 327-345

pronounced and frequent stochastically forced regime transitions observed in Models 2 and
3 result in a relatively low autocorrelation for time lags larger than the main decorrelation
timescale.

The importance of exactly how the stochastic forcing is implemented is best considered using
transition probabilities. For this calculation, we use Model 1 (Sura et al., 2001) as the control run.
The corresponding histogram in Fig. 2 is divided into terciles, defining (1) “below normal”, (2)
“normal”, and (3) “above normal”. These same states are used for each of the three models. In
each case, we estimate the conditional probability p(i|j) that the system already in state j will
undergo a transition to state 7 at some lead time 7, with i, j = 1,2, 3. The transition probability of
going from the center tercile to an extreme tercile as a function of lead time is shown in Fig. 6. The
transition probabilities p(i|2), i = 1, 3, estimated from Models 2 and 3, are significantly different
from those estimated from Model 1 at the 95% significance level for lead times greater than 6
months. Significance was assessed using the null hypothesis that the sampling populations were
the same, and that differences of estimated probabilities were normally distributed (Spiegel, 1975).
From Fig. 6 it is clear that the distribution of the driving noise plays a crucial role in the frequency
of the transitions. The recurrence probability p(ili), i = 1,2, 3, that the system in state / will again
(or still) be in state i some time 7 later is shown in Fig. 7 for all three models. All visible differences
are significant. While there may be some claim that the details of the stochastic forcing are not
crucial to the probabilistic description of the normal state, both the distribution and the spectrum
of the stochastic forcing are very important to the probabilistic description of the extreme states.

4.2. Model 4

Recall that the daily sampling of the stochastic wind forcing results in a reduced variance of the
wind stress above the decorrelation timescale. Because of this the fourth experiment (Model 4),
similar to Model 3, but with the total variance reduced to 12.5 m? s72 is performed. The same
tools as before are used to analyze the outcome of Model 4.

The time-series of eddy energies and the histogram the eddy kinetic energy (Fig. 2) reveals that
the decrease of the total variance reduces the tendency of the system to adopt the asymmetric high
eddy energy state. Obviously the total variance of stochastic forcing is not strong enough to
enable the system to reach the neighbourhood of the unstable fixed point. Again, the spectra of
the eddy kinetic energy time-series (Fig. 4) shows an overall red-noise behaviour. Nevertheless, the
oceanic spectrum forced by Model 4 shows nearly the same low-frequency variability on timescale
above about 50 months as the spectra of Models 1 and 2. The autocorrelation function of the eddy
kinetic energy time-series of Model 4 is comparable to Model 1 (Fig. 5). The transition proba-
bilities p(i|2), i = 1,3, (Fig. 6) estimated from Model 4 are significantly different from those es-
timated from Models 1-3 at the 95% significance level for lead times greater than 6 months.
Moreover, the recurrence probability p(i|i), i = 1,2,3, (Fig. 7) for Model 4 that the system in
state 7 will again (or still) be in state / some time 7 later is significantly different from the remaining
three stochastic models.

Thus, Model 4 proves that the differences in the oceanic response for Models 1-3 are not due
mainly to the higher amplitude noise in the white part of the forcing spectrum. Therefore, the long
timescale behaviour of the double-gyre model indeed depends on the short timescale aspects of the
stochastic forcing.
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5. Summary and discussion

In this paper, we have illustrated in the context of a reduced gravity double-gyre ocean model
driven by wind stress how “minor’ details of stochastic forcing can have a significant effect on the
temporal and spatial response by the forced system: The regime behaviour of the double-gyre
model depends on the short-scale temporal aspects of the stochastic forcing.

These findings are important because the traditional education of geophysicists places a great
deal of emphasis on how processes at different timescales may be studied in isolation from each
other. While this approach is indeed useful in many cases, its application to nonlinear stochastic
systems is ambiguous. In this study, we have examined a system which is neither linear nor de-
terministic. Our results show how physical processes in the ocean—atmosphere system with widely
disparate timescales can and do interact. Further, we have shown that the distribution of the
forcing in phase space can also be crucially important to the dynamical response of the system at
long timescales. The implication is that details of stochastic forcing in a numerical climate model
must be physically justified to the fullest extent possible.

In most cases of climatological interest, the stochastic forcing is intended to represent a
combination of unresolved dynamical mechanisms. It is thus reasonable to invoke the CLT and
assume the stochastic forcing to be normally distributed. The distribution, however, will not give
accurate statistics if the timescales of the stochastic forcing are misrepresented.

The idea of stochastic forcing (particularly white stochastic forcing) having timescales may
seem contradictory. The resolution of this apparent contradiction lies in the fact that continuous
white noise is an idealization of a rapidly varying process which decorrelates much faster than the
physical system it forces. That is, white noise represents a limiting case of vanishing correlation
time and a simultaneous explosion of amplitude; the problem is that this limit depends on the
spectral properties of the forcing at infinitesimal Fourier frequency resolution. Infinitesimal fre-
quency resolution and infinite forcing amplitude are not realizable situations; it is a combination
of the size and spectrum of the forcing which allows or disallows the white-noise approximation.

If any frequency information about the stochastic forcing can be gleaned from observations,
then the correct stochastic limit is to be performed as in, for example, Kohler and Papanicolaou
(1977). Otherwise, the simplest realistic assumption is to assume that the rapidly varying forcing
decorrelates exponentially with some characteristic decay time. Naturally, this decay time may be
very uncertain if it is smaller than the sampling time of an observed or numerically generated
system. However, if the physical forcing is to be treated as stochastic in a numerical model, less
violence is done to the long-time variability of the generated system by using some uncertain but
finite decay time than by making grosser approximations to the stochastic forcing.

The implications of our results for long-range ensemble forecasting are clear: the accurate
prediction of extreme events on seasonal to interannual timescales can strongly depend upon the
representation of rapidly varying, perhaps unresolved, processes in a numerical prediction model.
After all, stochastic processes are the macroscopic manifestation of unresolved nonlinear inter-
actions. As stochastic parameterizations become popular (e.g., Buizza et al., 1999; Palmer, 2001),
the accuracy of probabilistic forecasts will increasingly depend on how appropriate the stochastic
representation is to the physical process it is meant to represent, despite the fact that ensemble
weather forecasting does take an average of the ensemble members to improve the forecast. The
dynamical form the CLT (Papanicolaou and Kohler, 1974; Sardeshmukh et al., 2001) offers some
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guidance for doing this. As implied by this theorem, a stochastic description of a system is never
arbitrary. On the contrary, as we have shown in the examples here, the timescales and distribu-
tions of stochastic parameterizations must be constructed in such a way that fidelity to the un-
derlying dynamics is preserved. Therefore, further research is required to study carefully the
response of more complex models (for example, a double-gyre ocean model with a substantially
better resolution) to stochastic parameterizations.
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Appendix A. The spectra of the stochastic forcing models
Let us first consider the spectrum of a variable which is constant in the interval [—7p, Tp). That

is, x = a for —Ty <t < Ty and x = 0 otherwise.
Now, the corresponding Fourier transform reads

x(t) = ZA” exp(iw,?)
or equivalently
/ x() expliont) d = 3 / Ax(t) expli(w, — wn)f) dr.

That is,

< iaa) >(exp(—ia)mTo) —exp(iw, 1y)) = 2n4,,

or

A, = < a >sin(a)mTO).
Wy,

Hence,

x(t) = Z (nZ)n> sin(w, Tp) exp(iw,?).

n

For a time-series m € E[0, c0) this reads

x(t) = Z <na£n) sin (W) exp(im,t),

n
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where ¢, <t < t,,,;. Furthermore, for evenly spaced m this equation becomes

0= (n‘z) sin (‘“2—"> exp(ion).

n

As a function of frequency w, this becomes

o = (2 ) s (%)
) = [ () s (%) arta),

where the range of the integral is taken over the phase space of the distribution of a,, that is,
dP(a,). For a flat distribution (Model 1) over the interval [—#,, 1], dP(a,) = da../(25,), and

(o)) =5 (Z) (). (A1)

If the distribution of a,, is Gaussian (Model 2) with standard deviation gy

dP(a,) =

1 —a d
S P 5,7 e

the variance spectrum reads

o) = (2 ) s (222, (A2)

Furthermore, if the variable x(¢) is generated with an univariate Ornstein—Uhlenbeck process, the
Fourier transform of the corresponding autocorrelation function (13) yields the spectrum of
Model 3:

2 0 1
(x(onl) = G e (A3)
Note that the spectra of Models 1 and 2 [(A.1) and (A.2)] are identical, because the variance of
a flat distribution in the interval [—n, 1] is (217,)°/12. Graphs of the different spectra are shown in
Fig. 1. It can be seen that the spectra of the distributions sampled once daily dip to zero at specific
frequencies. This happens because waves interfere in order to find Fourier components which
reproduce a perfect square wave.
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